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The validity of the Bagnold constitutive relation in gravity-driven granular flow down an inclined plane is
studied by discrete element �DEM� simulations. In the limit of infinitely hard particles, the Bagnold relation is
known to hold exactly. We determine deviations from this relation as a function of all parameters governing
interparticle interactions. These include elastic compliance, inelastic dissipation, friction coefficient, and inter-
particle cohesion. We find significant deviations from Bagnold rheology in some regions of this parameter
space and propose a generalized Bagnold relation to account for this effect. Moreover, we note a significant
correlation between the breakdown of Bagnold rheology in the bulk and the appearance of a long-time tail in
the two-particle contact time distributions.

DOI: 10.1103/PhysRevE.77.061302 PACS number�s�: 45.70.�n, 45.70.Mg, 83.10.Ff

I. INTRODUCTION

A successful “hydrodynamic” description of granular
flows hinges on identifying appropriate constitutive relations
between the local strain rate �and perhaps other variables
such as density� to the local stress state of the system. With
such a set of constitutive relations governing momentum
transport through the system, it is then sufficient to include
only the necessary conservation laws to develop a closed set
of continuum relations to describe the flowing granular state
at length scales large compared to that of the constituent
particles.

Usually, granular flows can be characterized by the den-
sity, or packing fraction, of the bulk material. In dilute flows,
particles typically undergo only binary collisions, and are
transported with the mean, hydrodynamic flow, but also pos-
sess large velocity fluctuations that are of the same order of
magnitude as the mean flow itself �1�. This type of flow can
be modeled as a gas of inelastic particles using modified
kinetic gas theories that include terms for the granular vis-
cosity and granular temperature �2�. These typically lead to a
local, linear relationship between the shear stress and rate of
strain in the material. Slow, dense granular flows are often
described as a quasistatic continuous medium that creeps via
plastic deformations such that the flow properties are essen-
tially velocity independent �3�, whence the shear stress is
proportional to the strain only.

For densities and excitations intermediate between these
two regimes the flows are dense yet at the macroscopic scale,
the material continuously deforms. At the same time, how-
ever, the stresses within the granular pile are dominated by
contact forces so the Reynolds stress associated with the ki-
netic energy of the particles plays a subdominant effect �4�.
This latter criterion is often used to differentiate between
different flowing regimes. In the language of Campbell �5,6�,
here we investigate the inertial–elastic-inertial regime, using
large-scale simulations of gravity-driven, dense granular
flows down a rough and bumpy inclined plane.

Recent experiments �7–9�, together with large-scale simu-
lations �4�, have focused much effort on the inclined plane
geometry �10�. One common feature about these types of
dense flows is that they are approximately described by Bag-
nold rheology �11�. The Bagnold relation posits that the
shear stress in the system is proportional to the square of the
rate of shear strain. In other words, the granular viscosity is
linearly proportional to the local shear rate. Bagnold’s argu-
ment for this relation as it applies to gravity-driven, inclined
plane follows from the consideration that the transfer of
down-plane momentum in the direction of flow �i.e., the x
axis� perpendicular to the free surface �z� occurs via off-
center binary collisions between hard particles. The fre-
quency of these collisions and the magnitude of momentum
transferred in each collision are both proportional to the
shear rate �̇ so that the x-momentum flux through planes
normal to the z axis is proportional to the square of the shear
rate, or �xz��̇2.

The validity of the Bagnold constitutive law fundamen-
tally relies on instantaneous binary intergrain collisions. It
has been derived within the kinetic theory approach �12� ap-
plicable to rapid flows. Interestingly, as discussed by Lois et
al. �13�, the Bagnold constitutive law is a consequence of an
exact symmetry of Newton’s laws of motion for perfectly
rigid spheres where interparticle forces become constraint
forces to enforce mutual noninterpenetrability. Curiously, for
hard spheres, the Bagnold constitutive relation will be exact
in all flow regimes regardless of interparticle friction, and
particle inelasticity. This picture seems to be corroborated by
the inertial number constitutive model �14,15�. However,
even hard spheres can exhibit deviations from Bagnold rhe-
ology at sufficiently high densities due to the emergence of
correlated structures within the flow that modify the charac-
teristic time scale of the system �16,17�. Shear flow simula-
tions of soft spheres �18� also characterized different popu-
lations of colliding particles based on the duration of
contacts. A number of rheological models that take into ac-
count various aspects of local and nonlocal effects have also
appeared �19–24�.
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The current work was motivated by a recent study of co-
hesive granular materials where it was clearly shown that the
Bagnold constitutive law fails �25�. These results suggest a
more general question: What features of the intergrain inter-
action affect the continuum level description of momentum
transport in the system? To examine this issue, we explore
the complete parameter space of intergrain interactions to
determine their effect on the continuum-level constitutive re-
lation of the material. In this paper we study the rheological
importance of the particles’ elastic compliance, their coeffi-
cient of restitution �a measure of energy dissipation per col-
lision�, the magnitude of intergrain cohesive forces �e.g., due
to a wetting fluid �26,27��, and the intergrain friction coeffi-
cient. We also compare between the Hookean and Hertzian
contact force models. Finally, we vary the tilt angle of the
granular system with respect to gravity in order to change the
flow dynamics to observe their effect on the granular consti-
tutive relation at least within the steadily flowing dense re-
gime. In this way we seek to relate the fundamental physics
of the intergrain interaction to the collective flow properties
of the system as a whole. Rather than catalog the multiple
rheological effects of varying multiple intergrain parameters,
it would be clearly beneficial to identify a smaller set of
microscopic variables that determine the collective behavior
of the granular system.

The longevity of contacting pairs of particles emerges as a
crucial parameter in the resulting flow properties and subse-
quent deviations from Bagnold rheology �28�. We have
found that the most effective way to influence contact times
is through tuning the elastic compliance of the particles,
which can dramatically alter the rheology �28�. One ap-
proach to characterizing the quantitative importance of the
particles’ elastic compliance is through the Mach number
�=d�̇ /2c, where d is the particle diameter and c is the speed
of sound in a grain�. This ratio compares the sound propaga-
tion time across a granular particle to the inverse shear rate.
It has been suggested that when this quantity is large one
expects to observe larger deviations from simple Bagnold
scaling �29�. However, the Mach number does not capture
the complex and collective dynamics inherent to a many-
body system such as large-scale granular flows.

We identify a more appropriate dimensionless parameter
�a ratio of time scales� that correlates with the breakdown of
the Bagnold rheology. In recent work �28�, we attributed this
breakdown to the formation of relatively long-lived clusters
in the system. By spanning streamlines in the flow, these
clusters allow for an additional momentum transport mecha-
nism. This generates a term in the constitutive law propor-
tional to �̇. To account for these two independent modes of
momentum transfer, we proposed a modified constitutive re-
lation of the form

�xz − �c = a�̇2 + b�̇ , �1�

which allows for a combination of collisional and elastic
momentum transport. Here, �c is the finite yield stress at the
boundary between the liquidlike flowing region and the sol-
idlike plug. This term is only nonzero when cohesive inter-
actions are present. Based on this proposal, we suggested
that the presence of long-lived contacts in the system plays

the key role in determining the applicability of Bagnold’s
relation. When such long-lived contacts allow the formation
of streamline-spanning clusters, the linear term in Eq. �1�
will become significant resulting in the breakdown of the
Bagnold hypothesis. By long-lived we mean that such struc-
tures endure over the typical period of particle rearrange-
ments, which is set by the local shear rate.

In this paper we present new data on the intergrain contact
time distribution and how variations in that distribution cor-
relate with changes in the bulk rheology of the granular ma-
terial. We find that any changes in the grain interaction pa-
rameters that lead to longer long-lived contacts do indeed
lead to the failure of the Bagnold constitutive relation, i.e.,
the growth of the linear in the rate-of-strain term in Eq. �1�.
Additionally, we find that the typical intergrain interaction is
always a simple two-body collision for any set of param-
eters. Thus, even in these dense flows where the particle
volume fraction is about ten percent less than the random
close-packed limit, the mean coordination number of the par-
ticles is approximately unity �28�. This counterintuitive result
supports similar diffusion wave spectroscopy-based mea-
surements on the densely flowing state by Menon and Durian
�30�. Moreover, we find that we can correlate the granular
rheology over our multidimensional parameter space of in-
tergrain interactions with the duration of rare, long-lived
contacts �to be defined precisely below�, but not with the
typical intergrain contact times. In all cases, the typical in-
tergrain contact time remains short, however, it is the dynam-
ics of the rare, long-lived intergrain contacts that control the
collective bulk rheology of the material, leading to non-
Bagnold behavior.

The remainder of this paper is organized as follows: We
first review our simulation methods in Sec. II, followed by
an exploration of the effect on granular rheology and inter-
particle contact lifetime distributions of varying specific in-
teraction parameters in Sec. III. We then demonstrate that the
lifetime of long-lived contacts controls the granular rheology
in the densely flowing state and then summarize our results
in Secs. IV and V, respectively.

II. SIMULATION METHOD AND DATA ANALYSIS

We present results for a series of discrete element simu-
lations carried out on N monodispersed spheres of diameter d
and mass m in three dimensions. The simulation area con-
sists of a rough base with length 20d, and width 20d, tilted
an angle � with respect to gravity. We use periodic boundary
conditions for both length �flow or x direction� and width
�vorticity or y direction�. For N=35 900, as in most of our
simulations, the height of the flowing pile is between 90d
and 100d depending on the angle of inclination.

Our simulations use a modified version of the model de-
veloped by Cundall and Strack �31� and Walton �32� for the
interparticle interactions. The inelastic contact forces are
modeled through a spring-dashpot interaction for both nor-
mal and tangential forces to their line of centers. Consider
two spheres i and j separated by rij =ri−r j with a relative
velocity vij =vi−v j. If they are in contact, the spheres have a
relative normal compression �ij =d− �rij�, which results in a
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normal and tangential component to the contact force Fij
=Fnij

+Ftij
with

Fnij
= f��/d��kn�ijnij −

m

2
�nvnij

� + Fij
c ��ij� , �2�

Ftij
= f��/d��− ktutij

−
m

2
�tvtij� , �3�

where nij =
rij

�rij�
. The kn,t are elastic constants in the directions

along �n� and tangential �t� to the line of centers. These
parameters specify particle rigidity or elastic compliance.
For example, the largest value used in these simulations, kn
=2�109 mg /d, roughly corresponds to a Young’s modulus
equal to that of glass spheres, E�6�109 Pa. Similarly, the
�n,t are dissipative constants that determine energy loss dur-
ing collisions. The elastic tangential displacement utij

is set
to zero upon formation of a contact and is truncated as nec-
essary to satisfy the Coulomb yield criterion, �Ft��	�Fn�.
The prefactor in Eqs. �2� and �3�, f�x�, is unity for Hookean
contacts �the force is proportional to the displacement� and
	x for Hertzian contacts �the force is proportional to dis-
placement to the 3/2 power� �33�. Fij

c ��ij� is the cohesive
force, which is derived from an effective cohesive potential
between particles i and j. This potential is modeled with a
Gaussian well centered just inside the point of contact, rc
=d−�,

Uij
c = − Ae−�rc − �rij��

2/�2
, �4�

with an effective width �=0.01d leading to an adhesion force
of the form

Fij
c = 2Anij

�rc − �rij��
�2 e−�rc − �rij��

2/�2
. �5�

The short-range cohesive force is set to zero for distances
greater than 1.02d. This simple form is chosen for the cohe-
sive force on the criterion that it is short ranged, the magni-
tude is easily controllable �through A�, and the form is com-
putationally simple �25�. For the majority of this work we
study cohesionless particles �A=0�.

In a gravitational field the total force on the ith particle is
determined by

Fi
tot = mig + 


j

�Fnij
+ Ftij

� , �6�

where the sum extends over all particles j in contact with the
ith particle and g is the acceleration due to gravity.

Energy dissipation occurs during collisions due to the ve-
locity dependent forces in Eqs. �2� and �3�. Additionally the
work done in creating elastic strains ut at an established in-
terparticle contact is lost with either interparticle slip at the
Coulomb criterion or particle separation. For Hookean con-
tacts the coefficient of restitution, en, parametrizes the dissi-
pative nature of the interparticle collisions. In terms of the
parameters introduced in Eq. �2� for Hookean contacts,

en = e�−�ntcol/2�. �7�

Here, tcol is the duration of an interparticle contact during a
collision between two particles—the binary collision time—
which is given by

tcol =



	�2kn/m − �n
2/4�

. �8�

For Hertzian contacts we still parametrize energy dissipation
during interparticle collisions using �n, but cannot define a
coefficient of restitution because the energy loss depends on
the relative velocity between the particles.

We varied most of these interaction parameters during this
study. Unless otherwise stated, we set kt=2kn /7, 	=0.5, and
�t=0. In the Hookean case, when varying kn, �n is also var-
ied to maintain a fixed coefficient of restitution, en=0.88
�unless another value is explicitly stated�. For example, kn
=2�105 mg /d, requires �n=50�−1 to ensure the desired co-
efficient of restitution. We used these same values of kn,t and
�n,t for the Hertzian contacts. All times are reported in units
of �, where �=	d /g. The time step for all simulations with
kn�2�105 mg /d is �t=10−4�. To ensure accurate integra-
tion of the dynamics, the time step was reduced with increas-
ing spring constant. For kn=2�106 mg /d we set �t=2.5
�10−5�, kn=2�107 mg /d, �t=1�10−5�, and kn=2
�109 mg /d, �t=1�10−6�. The initial system was allowed
to evolve for up to 109�t. In the steady state, data was col-
lected over a period of 2−5�106�t.

To determine the extent to which the flow field satisfies
that expected from the Bagnold constitutive law we examine
the velocity profile vx�z� in the chute flow geometry at an
inclination angle �. By symmetry the only nonzero strain rate
and velocity in the system are �zvx and vx, respectively. The
solution for the granular flow with a free surface at height
z=h is determined by requiring force balance �z�xz
+�g sin �=0, where � is the mass density of the pile.

vx�z� =
2a

3c
��G2 +

ch

a
�3/2

− �G2 +
c

a
�h − z��3/2� − Gz ,

�9�

where c=�g sin � and G= b
2a . When cohesive interactions are

present, the yield criterion from Eq. �1� is included and h is
the height of the flowing pile beneath the solid plug. The
constants a ,b from Eq. �1� are not known a priori. These
values are adjusted to achieve the best fit to the velocity
profile data using an implementation of the nonlinear least-
squares �NLLS� Marquardt-Levenberg algorithm. The solu-
tion given in Eq. �9� assumes a spatially uniform mass den-
sity in the system. This assumption was directly tested
against the simulation data in the flowing regime and was
found to be valid except near the upper surface. For cohe-
sionless systems, this consists of a saltating layer near the
free surface a few layers thick. For cohesive flows, this cor-
responds to the solid plug region where �̇�0. The solid plug
is of higher density than the flowing, dilated region below.
No data for particle contact dynamics or granular rheology
was taken from either of these regions.
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Of more physical relevance is the ratio of the stress con-
tribution from the term linear in �̇ to that from the quadratic
term. This ratio is defined by


 =
b�̇

a�̇2 . �10�

This will be used throughout this work to characterize the
deviation of a flow from the traditional Bagnold constitutive
relationship. 
=0 corresponds to a purely Bagnold flow
with a viscosity proportional to �̇, and 
→� corresponds to
a completely non-Bagnold flow with viscosity independent
of �̇. In the following we explore particle interaction param-
eters that cause deviations.

Based on our previous work on the effects of granular
cohesion of flow rheology, we believe that the principal
cause of the breakdown of Bagnold rheology in this case is
the formation of long-lived interparticle contacts in the ma-
terial. Here we examine whether the presence of such long-
lived contacts is the generic cause of the breakdown of Bag-
nold rheology in granular systems.

To meaningfully define a contact time and thus give a
precise definition to “long-lived contact” we compare inter-
particle contact times �c, to the typical time scale for particle
rearrangements in the flowing state. That time scale is set by
the shear time �̇−1. Throughout this work, we use the dimen-
sionless quantity given by the ratio of the contact time to the
shear time, �c�̇, measured locally in the flow. Because of the
depth dependence of the flow velocity, we choose to compare
lifetimes and their distributions at the center of the flowing
pile. Though this choice is arbitrary, the average contact life-
times �see Fig. 4�b�� are relatively insensitive to position in
the flowing pile.

To analyze the failure of Bagnold rheology we compute
not only the deviation from Bagnold rheology via 
, but also
the distribution P��̇�c� of dimensionless contact times �̇�c,
where �c is the time that two particles remain in continuous
contact. Two particles are considered in contact as long as
they remain within a distance dc of each other. For Secs.
III A and III D, where the cohesive force is not present, A
=0, we use dc=d, which is to say that a contact is considered
broken once two particles no longer physically touch. In the
case of cohesive particles, we take the contact zone to be
extended beyond d since the cohesive force continues to act
on neighboring particles even when physical contact is bro-
ken. We will discuss this further in Sec. III E. The contact
zone can also be widened to allow for high frequency rat-
tling, which may not be detectable in experiment. A compari-
son of P��c� for dc=d, 1.001d, 1.01d, and 1.02d is shown in
Fig. 1 for a noncohesive system. As seen from this figure, a
general decrease in contact times is seen as dc approaches d
exactly. We will return to discuss these features further in
Sec. III E.

III. RESULTS

We now systematically modify properties of the interpar-
ticle interaction and monitor their effect on granular rheology
and the distribution of contact times in the material. Several

parameters of the granular system are found to have signifi-
cant influence on both the flow profile and the contact time
distributions.

A. Particle hardness

As expected from general principles the stiffness of the
particles plays a dramatic role in controlling deviations from
Bagnold rheology. We begin by examining the effect of
changing particle spring stiffness.

To accurately model a hard-particle material such as glass
beads of size d=100 	m and density 2500 kg m−3, a spring
constant of order 1010 mg /d is needed. Such large elastic
constants require a computationally prohibitive reduction in
the size of the integration time step. Consequently, past
simulations have used spring constants kn
O�105� mg /d to
capture the behavior of hard-particle systems �4,12,34,35�.
The quantitative effect of the particles’ elastic compliance on
the granular rheology has been reported elsewhere �28�.

In Fig. 2 we plot 
, as defined in Eq. �10�, vs the effective
spring constant kn of the particles in order to quantify devia-
tions from Bagnold rheology. Here the particles interact via
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P
(τ

c)

τc

FIG. 1. �Color online� Contact lifetime distributions P��c� for
Hookean particles in the center of the pile with �=23° and kn=2
�105 mg /d for values of dc=d �black solid�, 1.001d �red dotted�,
1.01d �green dash-dotted�, and 1.02d �blue dashed�. The main fea-
tures are the shrinking of the short contact time peak associated
with binary collisions and the growth of the long contact time tail as
the contact zone is widened.
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FIG. 2. �Color online� 
 vs kn �in units of mg /d� for Hookean
particles with en=0.88 at three different heights z within the pile
�red � for z= h

4 , black � for z= h
2 , and green � for z= 3h

4 �. 
 is
large for small values of kn but goes toward zero as the particles
stiffness increases.
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Hookean springs and �n is varied so that the coefficient of
restitution en=0.88 for all seven values of kn. Since �̇ de-
pends on z, we show 
 for three distinct heights within the
pile: z= h

4 , z= h
2 , z= 3h

4 . As expected we note the general trend
that lower particle elastic compliance leads to a more
Bagnold-like constitutive relation at all measured heights.
Indeed, our data for kn�2�105 mg /d is consistent with

=0, i.e., with the Bagnold constitutive relation. For more
compliant particles, however, there is a significant deviation
from Bagnold rheology. As the spring constant kn decreases,
the linear momentum transport term becomes more impor-
tant in describing the flow profile. For the softest spring con-
stant studied, the linear in shear rate term in the constitutive
law accounts for more than four times the stress than does
the Bagnold contribution. Examining the entire data range
we find that the empirical relation


 � J�dkn

mg
��

, �11�

holds well at a fixed height within the pile using the param-
eter values �=−1.3, and J=1.25�105. The value of 
 de-
pends not only on kn, but also on the local shear rate.

In Fig. 3 the contact lifetime distribution in the center of
the pile is shown for several values of kn. The peak at short
times coincides well with the calculated collision time �̇tcol,
which is shown by the vertical lines in the figure. This line
represents the contact time of a simple two-body collision
between underdamped Hookean springs; the time they spend
in contact will be half of one period of oscillation �Eq. �8��.
The contact lifetime distributions are clearly dominated by
the weight of the binary collision peak. However, as the par-
ticles become softer, the weight of this peak decreases and
the distribution becomes broader. For kn�105 mg /d, there
is an increasing fraction of long-lived particle contacts with

�̇�c=O�1�. These excessively long-lived contacts in the
softer particle systems appear to promote the formation of
transient stress-bearing structures within the material. These
structures span streamlines in the flow thus elastically trans-
mitting stress across their length in proportion to the rate of
particle impacts with these structures, which occur at a rate

�̇.

The mean contact lifetime as a function of spring constant
is shown in the inset of Fig. 3. The average dimensionless
contact lifetime ��̇�c� decreases with increasing kn by several
orders of magnitude over the range of kn. The average con-
tact lifetime simply scales as the two-body collision time
��c�
kn

−1/2. This shows that the mean contact lifetime is
dominated by the two-body collision peak and is relatively
insensitive to the changes in the long-time tail of the contact
time distribution. In Sec. IV, we discuss the proper scalar
representation of the contact distribution and compare it with
our scalar value for rheology change, 
.

B. Hookean vs Hertzian contacts

Both the linear Hookean and nonlinear Hertzian force-
displacement laws are commonly used to model granular
particles. The Hertz contact law is more suitable in taking
into account surface deformations that occur during colli-
sions between elastic spheres �33�. In fact, Hertz contact
forces are often necessary to accurately describe phenomena
involving elastically compliant particles, e.g., understanding
the propagation of sound in bead packs �36�. Here we com-
pare the granular rheology and contact lifetime distributions
for these two force laws to study their similarities and dis-
tinctions.

The contact lifetime distribution data shown in Fig. 4 are
for Hookean and Hertzian contacts with kn=2�104 mg /d
and 2�105 mg /d. All other parameters are identical. The
main feature is an overall increase in average contact lifetime
for the Hertzian contacts at any given height within the pile
for a particular value of kn, highlighted in Fig. 4�b�.

Based on our intuition that longer contact times lead to
particle structures that transmit stress elastically across the
system, we expect the rheology to be less Bagnold-like for
Hertzian contacts showing an increased weight of the term
linear in �̇. Figure 5 shows the effect of changing from
Hookean to Hertzian potentials to model the interparticle
forces. We show data for 
 only from the middle of the pile
�z= h

2 �, although the same behavior is observed anywhere in
the bulk. For Hertzian contacts with kn=2�103 mg /d, 

�104 consistent with a simple linear relation between stress
and strain rate within our numerical precision �data not
shown�. In general, for all values of the spring constants,
Hertzian flows indeed conform less to the Bagnold predic-
tion. This result is intuitively reasonable because Hertzian
springs are “softer” for small compressions, which will pro-
mote longer contact times. It is worth noting the similarities
in contact lifetime distributions of Hookean contacts with
kn=2�104 mg /d �black dashed� and Hertzian contacts with
kn=2�105 mg /d �red dash-dotted� in Figs. 4�a� and 4�b�
and comparatively similar rheology as measured by 
 in Fig.
5. The striking point is that the details of the interaction do
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FIG. 3. �Color online� Contact lifetime distributions P��̇�c� for
Hookean particles in the center of the pile with �=23°. The figure
shows distributions for several values of kn, which read from right
�small kn� to left �large kn� on the figure; kn=2�103 mg /d �blue
dashed�, 2�104 mg /d �green dash-dotted�, 2�105 mg /d �black
solid�, 2�106 mg /d �red dash-double dotted�, 2�107 mg /d �vio-
let dashed�, and 2�109 mg /d �gold solid�. P��̇�c� is scaled down
for kn=2�107 mg /d and 2�109 mg /d, by 10 and 105, respec-
tively. Vertical lines represent the two-body collision times. The
inset shows the average contact time as a function of kn. The contact
lifetime is nondimensionalized by the shear rate at the midpoint of
the pile.
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not appear to matter; if the contact distribution is similar, one
should expect similar rheology and vice versa.

The flows corresponding to both of these force laws be-
have as expected when kn gets very large or very small.
However, it is important to note that if one is interested in
modeling granular flows for hard particles, it is vital to use
large kn�106 mg /d in order to avoid possible artifacts that

may arise from using particles that are too soft. Particles with
Hookean contacts, on the other hand, have a larger regime of
effectively Bagnold rheology and thus allow simulations at
smaller spring constants to reproduce physical flows of much
harder particles.

C. Coefficients of restitution and friction

The dissipative properties of the interparticle interactions
also have effects on the distribution of contact lifetime in the
flowing pile. The effect of energy dissipation in collisions, as
parametrized by the coefficient of restitution en, has been
proposed to play an important role in some models of in-
clined plane flows �37�. In addition one may inquire as to the
effect of the friction coefficient 	 on granular rheology. We
find, however, that changing either en or 	 has a generically
small effect on the contact time distribution and a corre-
spondingly small effect on the granular rheology. This is at-
tributed to a competition in time scale behavior that is not
present in Sec. III A or Sec. III B.

In the previous sections on the effect of kn on flow behav-
ior, �n was varied in order to keep the coefficient of restitu-
tion at the constant value of en=0.88. We now fix the spring
constant for Hookean interactions at kn=2�104 mg /d and
vary �n to examine the effect of varying en �see Eq. �7�� on
particle contact lifetimes and granular rheology. On decreas-
ing en one might expect an increase in contact lifetimes by
removing more energy per collision during the flow. How-
ever, the internal time scale �̇−1 also increases as more en-
ergy is removed from the system in collisions. Examining the
upper panel of Fig. 6 we note that decreasing the coefficient
of restitution has a very small effect on the contact lifetime
distribution and on the mean contact time �inset� when scaled
by the shear time. This change is less dramatic than that due
to changing the elastic compliance of the particles as shown
in Fig. 3. The competing effects of longer contact times and
an increase of the internal time scale largely balance when
changing en. We return to these data and discuss one method
of quantifying the rheological changes in Sec. IV.

Increasing the friction constant 	 allows particles in con-
tact to store more elastic energy in those contacts before
slipping at the Coulomb criterion. By preventing slipping
until larger total strains, one would expect an increase in 	 to
lead to longer-lived contacts. This effect may be dramatic if
contacts are predominantly of the sliding type. If, however,
most contacts are actually transient collisions or rolling con-
tacts, one might expect the effect of changing 	 to be rather
minimal. The lower panel of Fig. 6 shows the contact time
distribution for a variety of friction coefficients between
0.2�	�0.5. The inset to the figure shows the dependence
of the mean contact lifetime on 	. The binary collision peak
is prevalent in each data set; because 	 can have no effect on
the binary collision time the position of these peaks differ
only by �̇. The long contact time tail is remarkably similar
for each distribution. This similarity suggests that long-lived
contacts are of the sliding variety. As 	 is increased, the
shear time also increases; Fig. 6�b� suggests that in the tail of
the distribution the increase in the shear time is balanced by
an increase in the duration of long-lived contacts. These con-
tacts cannot, then, be of the rolling type.
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In the case of kn and force law choice, the observed di-
mensionless contact times differ by orders of magnitude. In
the case of the dissipative coefficients, en and 	, there is no
change of such a magnitude. As expected, there is also no
large change in rheology associated with variations of these
parameters. Small changes in the dimensionless contact
times are difficult to resolve because data is collected from a
slice of finite width within the pile where the shear time is
treated as constant over this range. In this analysis there is a
balance between choosing a large enough region of the pile
over which to report contact distributions with reasonable
statistics, and choosing a thin enough slice of the pile so that
the shear time does not vary dramatically over the sample. In
spite of these constraints, we can say with certainty that the
dependence of both the contact time distribution and the rhe-
ology on kn and choice of force law is far stronger than that
of the dissipation due to 	 and en.

We have also studied the influence of particle stiffness
and restitution coefficient on collision rates. In Fig. 7 we
show the collision rate Nc defined as the average number of
collisions per particle per �, for a range of parameters. The
strongest dependence comes from kn shown in Fig. 7�a�,
where Nc increases as a weak power law of kn with power-
law exponent 
0.25, for both Hookean and Hertzian force
laws. This dependence quantifies the increasing weight of the
binary collision peak in the lifetime distributions shown in
Fig. 3 and is consistent with a divergence toward an inelas-

tically collapsed state in the hard sphere limit �38�, similar to
other two-dimensional studies �39�, where a power-law ex-
ponent of 
0.4 was observed.

These results show that despite the growing collision rate
and the propensity for hard particles to approach inelastic
collapse, the rheology, as quantified in Figs. 2 and 5, is ac-
curately described by the Bagnold law in the hard sphere
limit as discussed by Lois et al. �13�. This raises some inter-
esting questions regarding the underlying physical mecha-
nisms that lead to deviations from Bagnold rheology. These
results suggest the following picture, which is the focus of
current research �40�: The majority of the stress in the system
arises from the interaction forces between particles in con-
tact. These contact stresses can be decomposed into a binary-
collisional component, whereby contact stresses are transmit-
ted over time scales short compared to the shear deformation
time, and a long-lasting contact component, whose contacts
survive appreciably longer, which allows stresses to be trans-
mitted along extended particle structures across streamlines
in the flow. The ratio of these two pieces of the contact stress
is fundamental in determining the rheology of a granular
system. Similar ideas have been explored in two-dimensional
simulations of periodic shear flows of hard spheres
�16,17,41� and confined soft spheres �18�.

D. Dependence on tilt angle

If the key rheological control of the flowing state is the
duration of long-lived contacts measured in units of the shear
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time, then it should be possible to also vary the dynamics of
the system by directly varying the shear time while keeping
the microscopic interaction parameters fixed. We do this by
changing the inclination angle of the plane. An increase in
the tilt angle �, will increase the shear rate in the pile, which
leads to a decrease in the shear time; all collisions appear
longer to the system. Changing the tilt angle may, however,
have other effects on the particle contact time distribution,
since at higher tilt angles the grains have larger kinetic en-
ergy and higher granular temperature �velocity fluctuations�
which might lead to the breakup of long-lived contacts. Tilt-
ing the pile will result in a decrease of the shear time and
perhaps a decrease in the statistical weight of the long-lived
contacts in the contact time distribution. Depending on
which effect dominates, we can expect an increase in � to
result in a less Bagnold-like flow if the shear time effect
dominates or a more Bagnold-like flow if the temperature
effect dominates.

Figure 8 shows data for three values of � for Hertzian
contacts with kn=2�105 mg /d. In considering these contact
time distributions with varying � it is important to recall that
for Hookean contacts the collision time of the particles is
independent of their incoming velocity so the two-body col-
lision time does not change with �. For Hertzian contacts,
however, the two-body collision time increases with increas-
ing incoming velocity so in this more physically relevant
system there should be an increase in the fundamental colli-
sion time in the system.

When changing the angle of inclination, each distribution
has the same characteristic shape. The peak in each distribu-
tion, which we have seen corresponds closely with the two-
body collision time moves toward shorter times as the tilt
angle increases. This is consistent with the trend predicted by
the scaling of two-body collision times for particles having
Hertzian interactions. We see that the competition between
the two relevant time scales results in only minimal changes
in the scaled contact time distribution; for larger values of �
both the shear time and the average contact time are decreas-
ing. We thus expect there to be only a small rheological
effect associated with changing angle. This angle indepen-
dence is encouraging for the existence of an effective
continuum-level constitutive law for dense flowing granular
materials. If, on the other hand, there had been a significant

effect of tilt angle on the appropriate constitutive relation,
there would be little meaning for such a local stress strain
relation since any putative relation would also depend on the
global geometry of the flow.

This analysis can be performed only in the steady-state
regime of the chute flow so the range of available angles is
confined by the lower and upper bounds of �i����free. Be-
low this lower bound �i=20.5° the flow is intermittent �42�.
Above the angle of �free=27° the particles freely accelerate
down the chute indefinitely and no steady-state regime ex-
ists. Given this limitation on the range of � and thus the scale
of the imposed shear rate, it is reasonable to conclude that tilt
angle has little effect on the contact time distribution or the
granular rheology �data not shown�. It is quite possible that
for taller piles or for more compliant particles one of the two
effects would dominate and measurable deviations with
changing � would then be observed.

E. Interparticle cohesion

In previous work we reported on the breakdown of Bag-
nold rheology in cohesive granular material where the inter-
grain interactions incorporate the cohesive force shown in
Eq. �5� �25�. The departure from the Bagnold constitutive
law was attributed to the presence of momentum transport
through extended structures of particles remaining in contact.
We now study the contact lifetime distribution and rheology
of such cohesive systems in more detail. In Fig. 9, we plot 

as a function of the strength of the cohesive interaction A, for
system of kn=2�105 mg /d and total height �200d �the
height of the flowing region h depends on the cohesive
strength�. Intergrain cohesion has a drastic effect on the rhe-
ology, on par with the effects seen for varying the spring
constant kn as seen in Sec. III A. We also observe the ex-
pected trends: increasing the cohesive strength increases the
importance of the linear term in the modified constitutive
law. Even in the case of very hard particles, the cohesive
interaction allows the linear term to dominate the overall
constitutive relation.

We should expect, then, to observe a correspondingly
large increase in the number of extremely long-lived con-
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tacts. Figure 10�a� shows the contact time distribution for
several values of the cohesive strength using dc=d. It is ini-
tially puzzling to note that the effect of A on the contact time
distribution is rather weak, given that interparticle cohesion
is a significant rheological modifier. As seen in Fig. 9, the
rheology of the system depends quite strongly on this param-
eter. This discrepancy presents a problem.

In the previous sections where A=0, two particles were
considered to be in contact only if the separation of their
centers was equal to or less than one diameter, so that they
could exert forces on each other. Clearly, when A�0, par-
ticles can interact over a larger range of 1.02d; the range of
the attractive force. Since we are interested in interparticle
contacts inasmuch as they serve to transport momentum
through the system, our definition of particle contact must be
extended to include particles separated by 1.00d�dc
�1.02d that exert only cohesive forces on each other. How-
ever the adhesive contact potential at separations near 1.02d
generates vanishingly small forces, while the typical contact
forces make up a significant fraction of the weight of a par-
ticle. Thus, we extend the contact zone to include the range
over which pairs maintain significant �i.e., at least mg in
magnitude� interactions. We introduce an effective contact
range deff defined by

mg = 2A
�rc − deff�

�2 e−�rc − deff�
2/�2

. �12�

As the overall scale of the adhesive force increases �with
increasing A� the effective contact range grows from 1.00d
�A=0� to 1.014d �A=0.6�. For very small values of the co-
hesion �A=O�10−2��, Eq. �12� has no solution and the mag-
nitude of the cohesive force is always less than the weight of
one particle. In this case, the cohesive force is never signifi-
cant as compared to the magnitude of contact forces and the
contact zone is simply deff=d. Using this criterion for con-
tacts we plot the contact time distribution for a set of adhe-
sion parameters in Fig. 10�b�. The binary collision peak is
still distinctly visible in each distribution and the exponential
tail begins at a much later time compared to the correspond-
ing distribution with dc=d from Fig. 10�a�.

In Sec. IV, we will correlate the shift from the Bagnold
constitutive relation to the increase in long-time contacts in
the flowing pile.

IV. RELATION BETWEEN RHEOLOGY
AND CONTACT TIMES

We examine the connection between the contact time dis-
tribution and the constitutive relation for the rheology, by
identifying correlations between the changing velocity pro-
files to the contact dynamics in the chute flow. If there exists
a simple mapping between some measure of the change in
the contact time distribution to changes in the observed rhe-
ology, then this distribution can serve as a bridge between
the microscopic dynamics at the particle scale to the large-
scale collective rheology of the granular continuum. At a
minimum, such a measure would allow one to claim that the
rheological significance of all of the modifications of the
interparticle interactions explored in this paper can be deter-
mined solely by their effect on the contact time distribution.
Identifying the relevant unifying relation between micro-
scopic mechanics and collective rheology may also serve as
the foundation for a better theory relating dynamics across
these length scales.

In its simplest form, we seek a single scalar quantity that
can be extracted from the contact time distributions. Here we
introduce two such measures that characterize the dynamics
of �i� anomalously long interparticle contacts, and �ii� typical
interparticle contacts of a much shorter duration. We find that
the time scale of the atypically long interparticle contact
times provides a suitable measure which correlates strongly
with changes in the rheology. The typical short-time, colli-
sional contacts bear little insight into deviations from Bag-
nold scaling. To focus on the long-lived contacts and changes
in their duration with variations of the particle interaction
parameters, we compute for each simulation the dimension-
less number �̇�l, which is the product of the inverse shear
time with the contact lifetime of a representative set of long-
lived contacts chosen by the criterion as follows:

P��l� = 10−1. �13�

The contact time distribution is strongly peaked near the
two-body collision time with an approximately exponentially
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decaying tail toward longer contact times. The use of �̇�l
effectively quantifies the shift of statistical weight from this
short-time peak into the long-time tail.

This measure is clearly not the most obvious to employ;
one might, for instance, wish to use a measure of dimension-
less contact lifetimes that reflects the typical dynamics of the
particles such as the Mach number. Since we do not resolve
dynamics within a single particle, we cannot directly employ
this measure, but we expect that the quantity Ma= �̇tmode
�where tmode is the most probable, two-body contact lifetime�
reflects essentially the same short-time-scale dynamics asso-
ciated with typical intergrain interactions.

Figure 11 shows 
 plotted against �̇�l �measured as de-
scribed above� on a linear-log scale. We note the nearly
monotonic behavior, demonstrating that there is indeed a
positive correlation between the value of �̇�l and the break-
down of Bagnold rheology. In fact, we find the empirical
relation


 = 0.03e4.9�̇�l �14�

gives an excellent fit of our measure of the deviation from
Bagnold rheology as a function of the �̇�l, over about two
orders of magnitude of variation of 
. We have checked the
robustness of this result by using different values of the
threshold for the definition of rare, long-lived contacts �i.e.,
the value of 10−1 on the right-hand side of Eq. �13��. These
different definitions only change the dimensionless constants
in the empirical fit. The important aspect of this choice is that
the corresponding contact times sufficiently resolve the be-
havior of the long-lived contact tail of the distribution. This
result suggests that the Bagnold relation, while exact in the
limit of infinitely hard particles, is, in fact, exponentially
sensitive to the growth of long-lived contacts �see Eq. �14��.
These rare events in the granular dynamics appear to control
deviations of the collective rheology of the system from the
generic Bagnold form.

We note in Fig. 11 that the particle compliance and adhe-
sion are the most dominant parameters of both rheology and
contact lifetime statistics. Changing the particle elastic com-
pliance �black �� generates the largest changes in the rheol-
ogy. In fact, for stiff enough particles �blue �� we cannot
detect deviations from Bagnold rheology to the precision of
our measurements. Also, if the particles are made very com-
pliant the linear term completely dominates the rheology
�data not shown�. In both of these limits, the measured �̇�l
follows the expected trends, however, these points were not
used in fitting the data to Eq. �14� �dashed black line�. Inter-
particle cohesion �purple �� also produces dramatic rheo-
logical changes. If deff is used as the particle contact criterion
in the adhesive system, the data also support a simple expo-
nential relation between 
 and �̇�l. For the most adhesive
system �A=0.6�, however, we find a significant deviation
from this exponential trend. We interpret this result as fol-
lows. In this highly cohesive system, about 65% of the sys-
tem is locked into a solid plug that extends downward from
the free surface �25�. Thus the flowing system is significantly
smaller and has a greatly reduced shear rate. Near to this
stopped regime the shear time increases much faster than the
contact lifetimes so that product �̇�l is too small to fit our
trend line. Perhaps this point represents the limits of our
analysis of the steadily flowing state.

The dissipative parameters—the coefficients of restitution
and friction �red � and green �, respectively�—appear to
have a negligible effect on both 
 and on the duration of
long-lived contacts when scaled by the local shear time. As
discussed above, this effect appears to be related to the
complementary shifts in both the shear time and contact dy-
namics that these dissipative parameters generate. Examining
these points �the red and green symbols in Fig. 11� more
carefully, one notes that there may be a subtle trend opposing
our general analysis of the data. As the dissipative param-
eters are varied to increase �̇�l, the deviations from the Bag-
nold constitutive law either remain constant or slightly de-
crease. We do not know if this behavior represents a
limitation of the precision of our analysis, or suggests that a
single scalar parameter does not control the collective rheol-
ogy of the system.

In the inset of Fig. 11 we show that there is no similar
data collapse when we plot 
 against our version of the
Mach number—the typical collision time scaled by the local
shear time in the system. The data presented in the inset to
Fig. 11 reinforces our idea that deviations away from Bag-
nold rheology in the densely flowing state are controlled by
the duration of atypical, long-lived contacts in the system
and not by the most common grain collisional dynamics.
This result suggests that deriving the long-time-scale con-
tinuum mechanics for systems that are not readily approxi-
mated as hard spheres from averages over the microscopic
dynamics �as is the typical approach of statistical mechanics�
will be very difficult since it appears that the continuum
mechanics of the material is strongly influenced by rare
events. In this case, the microscopics appears to share simi-
larities with the shear transformation picture �20�.

V. SUMMARY

Understanding the relationship between the fundamental
interparticle interaction parameters and the larger length-
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FIG. 11. �Color online� 
 vs �̇�l for a large range of system
parameters. Different interaction potentials are specified by open
symbols for systems with Hookean interactions and filled symbols
for Hertzian interactions. Data is shown for varying kn �black ��, en
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scale flows of granular materials remains an unsolved prob-
lem. In earlier work �25,28� we had proposed a generalized
form of the Bagnold constitutive relation to describe the re-
lationship between shear stress and the rate of strain of
steady-state, dense granular flow for the inclined plane ge-
ometry. This modified Bagnold relation, Eq. �1�, consists of
the linear combination of two terms: the standard Bagnold
term that is quadratic in �̇, and a second term that is linear in
�̇, reminiscent of a usual fluid viscosity. We had found that
the presence of interparticle cohesion as might be found in
damp granular media �26�, leads to a dramatic increase in the
linear-in-shear-rate �i.e., viscous� term in the constitutive re-
lation. Based on that work we proposed that the existence of
the viscous contribution to momentum transport is due to the
presence of long-lived contacts in the system. We noted that,
even in our simulations of noncohesive granular media, the
Bagnold term accounts for only part of the shear stress in the
system. The linear term is also required to explain the flow
profiles particularly in the softer particle systems �28�.

In this paper we have broadened our analysis of primarily
noncohesive granular systems to better explore the constitu-
tive relation of densely flowing sand. We studied a larger
parameter space of interparticle interactions by studying the
relation of shear stress and rate of strain as a function of
particle stiffness, interparticle cohesion, and friction and res-
titution coefficients. We also studied the effect on the consti-
tutive relation of using the simpler Hookean �linear� interac-
tion between the particles or the more physical Hertzian
�nonlinear� force profile. In addition, by changing the incli-
nation angle of the chute, we explored the dependence of
these constitutive relations on the overall mean shear rate
within the pile for a given set of particle interaction param-
eters. It is shown that the dimensionless number 
 accounts
for the influence of both microscopic �e.g., spring constant�
as well as macroscopic �e.g., tilt angle� parameters without
appealing to a detailed knowledge of their exact values.

It is found that the prevalence of long contact times as
measured by �c alone is not sufficient for a change in the
granular rheology of the system. Contact times must be mea-
sured relative to the local shear time �̇−1, which provides the
fundamental time scale for the grains during flow. In other
words, the lifetime of transient particle structures must be
compared to the local frequency of collisions in the bulk,
which sets the relevant time scale for momentum transfer.
For system parameters that lead to both an increase in the
contact times and a decrease in the local shear time, such as
kn and the choice of force laws �Hookean vs Hertzian�,
strong rheological deviations are observed accompanied by
dramatic changes in the dimensionless contact time distribu-
tions. For parameters where these time scales are competing,
the analysis is considerably more complex. In the case of the

dissipative coefficients 	 and en, any increase in contact
times is balanced by a corresponding increase in the shear
time for the systems studied here. These parameters do not
strongly affect the granular rheology. We also note that a
significant fraction of long-lived contacts must be either slid-
ing or stationary in nature since contact times �c increase as
the coefficient of friction is increased. Finally, we find that
deviations from Bagnold rheology when cohesive interac-
tions are included are accurately described only by revising
our definition of a “contact” to account for the longer-ranged
attractive forces whose influence extends beyond the particle
diameter.

We have found that the Bagnold relation, which is exact
in the hard-sphere limit, is more robust for elastic particles
interacting via a Hookean �linear� force law. For the more
physical Hertzian contacts, however, we find that the purely
Bagnold constitutive relation poorly represents the rheology
for the most elastically compliant particles. In these cases,
the flow profile data for chute flow is better described in
terms of a standard viscous fluid. This result suggests that
experiments performed on elastic particles, such as soft rub-
ber beads and foams �43�, will find significant deviations
from Bagnold rheology. It is also likely that constitutive re-
lations that neglect particle compliance �14,15� may have to
be modified to account for this.

We also present in this paper data suggesting that the role
of long-lived interparticle contacts is the primary signal of
the breakdown of the Bagnold constitutive law. By examin-
ing correlations between the fraction of stress transmitted in
the Bagnold �shear rate squared� channel to the viscous one
and a simple measure of the change in the contact time dis-
tribution in the pile, we find a simple exponential relation
between the duration of long-lived contacts �̇�l and devia-
tions from Bagnold rheology as parametrized by 
. Typical
short-time collisions are consistent with the Bagnold picture,
but it is only the rare events in the pile that effect deviations
from this. We believe that this insight should lead to a more
general understanding of the dependence of bulk granular
rheology on the microscale grain interactions. This work
should guide the development of new theoretical approaches
�40� toward connecting microscopic granular mechanics and
bulk rheological relations.
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